Agnieszka Lach https://orcid.org/0000-0002-2831-6336

© Agnieszka Lach. Article available under the CC BY-SA 4.0 licence

ARTICLE

(English) PDF

ABSTRACT

The aim of the study presented in this paper is to analyse the distributions of trade durations for WIG20 stocks using data from May 2025, with a particular focus on modelling doubly truncated data. Left-truncated distributions for trade durations have already been described in the literature, which is justified, as the values of an excessive proportion of observations were equal to zero. In this study, it is assumed that the data are also righttruncated due to time limitations between the trading sessions. Three doubly truncated continuous distributions were analysed in the study, namely the lognormal, the Pareto and the Weibull distribution. To satisfy the assumptions of stationarity and independence, the data were divided into smaller subsamples. Goodness-of-fit tests were then performed to determine which theoretical distribution best describes the empirical data. The results indicate that the quality of the fit depends on the lower truncation level – the higher the truncation threshold, the better the lognormal distribution fits the empirical trade durations.

KEYWORDS

probability distributions, doubly truncated data, high-frequency data, trade durations

JEL

C12, C24, C41, G19

REFERENCES

Cohen, A. C. (1991). Truncated and Censored Samples. Theory and Applications. CRC Press. https://doi.org/10.1201/b16946.

Čížek, P., Härdle, W. K., & Weron, R. (Eds.). (2005). Statistical Tools for Finance and Insurance. Springer. https://doi.org/10.1007/b139025.

Doman, M. (2011). Mikrostruktura giełd papierów wartościowych. Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu.

Engle, R. F., & Russell, J. R. (1998). Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data. Econometrica, 66(5), 1127–1162. https://doi.org/10.2307/2999632.

Haas, M., & Pigorsch, C. (2009). Financial Economics, Fat-Tailed Distributions. In M. A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science (pp. 3404–3435). Springer. https://doi.org/10.1007/978-0-387-30440-3_204.

Kizilersü, A., Kreer, M., Thomas, A. W., & Feindt, M. (2016). Universal behaviour in the stock market: Time dynamics of the electronic orderbook. Physics Letters A, 380(33), 2501–2512. https://doi.org/10.1016/J.PHYSLETA.2016.05.035.

Klugman, S. A., Panjer, H. H., & Willmot, G. E. (2008). Loss Models: From Data to Decisions. John Wiley & Sons. https://doi.org/10.1002/9780470391341.

Kreer, M., Kizilersü, A., & Thomas, A. W. (2022). Censored expectation maximization algorithm for mixtures: Application to intertrade waiting times. Physica A: Statistical Mechanics and its Applications, 587, 1–11. https://doi.org/10.1016/J.PHYSA.2021.126456.

Krysicki, W., Bartos, J., Dyczka, W., Królikowska, K., & Wasilewski, M. (2004). Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach: część 1. Rachunek prawdopodobieństwa. Wydawnictwo Naukowe PWN.

Krzyśko, M. (2004). Statystyka matematyczna. Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu.

Li, Z., Chen, X., & Xing, H. (2023). A multifactor regime-switching model for inter-trade durations in the high-frequency limit order market. Economic Modelling, 118, 1–42. https://doi.org/10.1016/J.ECONMOD.2022.106082.

Ni, X.-H., Jiang, Z.-Q., Gu, G.-F., Ren, F., Chen, W., & Zhou, W.-X. (2010). Scaling and memory in the non-Poisson process of limit order cancelation. Physica A: Statistical Mechanics and its Applications, 389(14), 2751–2761. https://doi.org/10.1016/J.PHYSA.2010.02.040.

O’Hara, M. (2015). High frequency market microstructure. Journal of Financial Economics, 116(2), 257–270. https://doi.org/10.1016/J.JFINECO.2015.01.003.

Pewsey, A. (2018). Parametric bootstrap edf-based goodness-of-fit testing for sinh-arcsinh distributions. TEST, 27(1), 147–172. https://doi.org/10.1007/S11749-017-0538-2.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0